
ACM Reference Format
Kim, T., Delaney, J. 2013. Subspace Fluid Re-Simulation. ACM Trans. Graph. 32, 4, Article 62 (July 2013),
11 pages. DOI = 10.1145/2461912.2461987 http://doi.acm.org/10.1145/2461912.2461987.

Copyright Notice
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profi t or commercial advantage and that
copies bear this notice and the full citation on the fi rst page. Copyrights for components of this work owned
by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specifi c permission and/or a fee. Request
permissions from permissions@acm.org.
2013 Copyright held by the Owner/Author. Publication rights licensed to ACM.
0730-0301/13/07-ART62 $15.00.
DOI: http://dx.doi.org/10.1145/2461912.2461987

Subspace Fluid Re-Simulation

Theodore Kim∗

Media Arts and Technology Program
University of California, Santa Barbara

John Delaney†

Media Arts and Technology Program
University of California, Santa Barbara

Figure 1: An efficient subspace re-simulation of novel fluid dynamics. This scene was generated an order of magnitude faster than the
original. The solver itself, without velocity reconstruction (§5), runs three orders of magnitude faster.

Abstract

We present a new subspace integration method that is capable of
efficiently adding and subtracting dynamics from an existing high-
resolution fluid simulation. We show how to analyze the results of
an existing high-resolution simulation, discover an efficient reduced
approximation, and use it to quickly “re-simulate” novel variations
of the original dynamics. Prior subspace methods have had diffi-
culty re-simulating the original input dynamics because they lack
efficient means of handling semi-Lagrangian advection methods.
We show that multi-dimensional cubature schemes can be applied
to this and other advection methods, such as MacCormack advec-
tion. The remaining pressure and diffusion stages can be written
as a single matrix-vector multiply, so as with previous subspace
methods, no matrix inversion is needed at runtime. We additionally
propose a novel importance sampling-based fitting algorithm that
asymptotically accelerates the precomputation stage, and show that
the Iterated Orthogonal Projection method can be used to elegantly
incorporate moving internal boundaries into a subspace simulation.
In addition to efficiently producing variations of the original input,
our method can produce novel, abstract fluid motions that we have
not seen from any other solver.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically based modeling

Keywords: fluid simulation, subspace integration, cubature
Links: DL PDF

∗kim@mat.ucsb.edu
†delaneyj@mat.ucsb.edu

1 Introduction

Fluid simulation methods have made great recent progress, but
working with high-resolution fluids can still be a time-consuming
process. Once a large-scale simulation has completed, the results
are usually considered static; obtaining new results involves launch-
ing another long-running simulation. However, having already paid
the cost of simulating a sequence, can we somehow analyze its
dynamics and use the results to efficiently re-simulate sequences
that are similar to the existing one? Such a method would afford
users considerable freedom when tuning parameters, as each tweak
would not trigger hours of simulation. A single simulation could
also be used to quickly generate high-quality effects libraries where
many similar versions of the same element are needed, such as a
collection of steam elements for a kitchen scene [Shah 2007].

We use subspace integration to construct an efficient fluid re-
simulator, because it has been known to yield large simulation ac-
celerations. This acceleration is realized by analyzing the results of
previous N -dimensional simulations, extracting an r-dimensional
basis, and simulating within this rank-r reduced basis. In general,
r � N , so large speedups can be realized. These methods are also

ACM Transactions on Graphics, Vol. 32, No. 4, Article 62, Publication Date: July 2013

http://doi.acm.org/10.1145/2461912.2461987
http://portal.acm.org/ft_gateway.cfm?id=2461987&type=pdf

variously known as model reduction, reduced order, or proper or-
thogonal decomposition methods. They have a long history in fluid
simulation [Lumley 1967; Berkooz et al. 1993], in part because
turbulence analysis was one of their initial applications. Effective
subspace fluid simulation methods have also been developed for
computer graphics [Treuille et al. 2006; Wicke et al. 2009]. How-
ever, these works do not support re-simulation, as they are not (and
do not claim to be) consistent integrators [Carlberg et al. 2011].
They leverage existing simulation data, but cannot reproduce the
dynamics of that original data.

The inconsistency arises because these methods do not use sub-
space analogs of the standard integration methods used in com-
puter graphics [Stam 1999]. In place of standard semi-Lagrangian
and implicit schemes, they use finite difference and exponential
schemes. The likely reason for this departure is that it has been
unclear how to apply the projected tensor technique that usually
enables efficient subspace integration [Treuille et al. 2006; Barbič
and James 2005; Pentland and Williams 1989] to semi-Lagrangian
methods. In this work, we present a subspace fluid simulator that
performs efficient (N -independent) semi-Lagrangian advection and
enables fast re-simulation. Our technical contributions are:

• A cubature approach [An et al. 2008] for efficiently com-
puting semi-Lagrangian advection entirely within a reduced
subspace. The approach generalizes to other non-linear tech-
niques, such as MacCormack advection [Selle et al. 2008].

• A scalable, asymptotically faster method of computing the cu-
bature points of a subspace. Precomputation time for one test
case dropped from almost six days to less than half an hour.

• Efficient re-simulation with modified parameters, such as
buoyancy, vorticity confinement, and total number of time
steps in the simulation.

• A subspace formulation of a standard fluid solver [Stam 1999]
that combines the entire pressure and diffusion stages into a
single matrix-vector multiply.

• A subspace method for efficiently handling both static and
moving obstacles based on the Iterated Orthogonal Projection
[Molemaker et al. 2008] method.

Finally, when parameters values deviate extremely from their origi-
nal values, we have found that the subspace solver does not diverge,
but instead stably generates abstract dynamics that we have not seen
from any other solver.

2 Previous Works

Since the pioneering work of Foster and Metaxas [1997] and Stam
[1999], many methods have been proposed for accelerating fluid
simulations. These include spatially adaptive [Losasso et al. 2004;
Klingner et al. 2006], synthetic turbulence [Kim et al. 2008; Narain
et al. 2008; Schechter and Bridson 2008], low viscosity [Mole-
maker et al. 2008; Mullen et al. 2009], coarse grid [Lentine et al.
2010], and vortex [Brochu et al. 2012; Pfaff et al. 2012] methods.
We present a subspace method that is largely orthogonal to these
approaches, and could be combined with any of them to produce
additional accelerations.

Subspace methods were first introduced to the graphics commu-
nity by Pentland and Williams [1989] and have been highly suc-
cessful at efficiently simulating solids. While the initial work
was in linear materials, it has since been extended to non-linear
St. Venant-Kirchhoff [Barbič and James 2005], Arruda-Boyce, and
Mooney-Rivlin [An et al. 2008] materials. An excellent recent tu-
torial [Sifakis and Barbič 2012] is available on the topic. Treuille

et al. [2006] pioneered subspace methods for fluids in computer
graphics, and subsequent work showed how to generalize the ap-
proach to modular tiles [Wicke et al. 2009]. Most recently, this
work was generalized from reduced polynomials to general reduced
algebraic functions [Stanton et al. 2013]. The eigenfunction work
of DeWitt et al. [2012] could also be viewed as a subspace method,
albeit one where basis functions are obtained via static analysis,
not from the SVD of existing simulation data. Our method is an
alternative that can be used in all of the applications areas of the
previous work, but additionally enables efficient re-simulation.

As mentioned in §1, subspace fluid simulation has a long history
in engineering [Lumley 1967; Berkooz et al. 1993]. Recent work
has developed control methods [Bergmann et al. 2005], improved
error bounds [Deparis and Rozza 2009], and improved the stabil-
ity [Amsallem and Farhat 2012; Serre et al. 2012] of subspace
integrators. Subspace re-simulation has been studied extensively,
particularly in aerospace engineering [LeGresley and Alonso 2001;
Anttonen et al. 2003; Bourguet et al. 2011]. However, no subspace
method has been developed that supports semi-Lagrangian and sim-
ilar backtrace-based advection schemes. Efficient re-simulation of
scenarios that employ them has therefore not been feasible.

We design a method of efficient supporting these types of schemes
within a subspace framework by employing the notion of cubature,
i.e. multi-dimensional quadrature. This approach has been suc-
cessfully applied to subspace material non-linearities in solid and
shell mechanics [An et al. 2008; Kim and James 2009; Chadwick
et al. 2009; Kim and James 2011]. Similar point-based approaches
have also been successful, such as Monte-Carlo sampling [Baraff
and Witkin 1992], and Key Point Subspace Acceleration (KPSA)
[Meyer and Anderson 2007]. All these works deal with solids and
shells; we will show that the approach generalizes to fluids.

3 Subspace Navier-Stokes

Notation: We will denote scalars using unbolded lower case,
e.g. w, vectors using bold lower-case, e.g. x, and matrices and ten-
sors using bold upper-case, e.g. A. Arbitrary non-linear functions
will be denoted in script, e.g. N (x). When using higher-order
tensors, we will follow the convention of Vasilesu and Terzopou-
los [2004] and use ×i to denote a product with respect to the ith
mode. For example, the matrix product LTSR would instead be
written as S×1 L×2 R. For a third-order tensor T ∈ RN×N×N ,
a product with respect with the third mode would be written as
T ×3 R. Reduced subspace variables will be denoted with a tilde,
e.g. ex = UTx denotes the projection of vector x into the subspace
spanned by U. When referring to full rank quantities, we will use
the variable N , and when referring to reduced rank quantities, the
variable r. We will assume that r � N . In all of the following,
U ∈ R3N×r , as each of the N grid cells usually store a 3D vector.

3.1 The Projected Tensor Approach

To motivate our approach, we will summarize the subspace ap-
proach of Treuille et al. [2006], which we characterize as a pro-
jected tensor approach. The Navier-Stokes equations are:

∂u

∂t
= −(u · ∇)u− ν∇2u +∇p+ fe (1)

∇ · u = 0, (2)

where u is the fluid velocity, ν is a viscosity constant, p is pressure,
and fe is a vector of external forces. For a discrete simulation grid
containing N cells, u ∈ R3N and fe ∈ R3N .

In Treuille et al. [2006], a divergence-free basis U is used which
eliminates the need to handle Eqn. 2 and the ∇p term in Eqn. 1.

62:2 • T. Kim et al.

ACM Transactions on Graphics, Vol. 32, No. 4, Article 62, Publication Date: July 2013

The diffusion operator ν∇2u is purely linear, so if the diffusion
discretization is written as a matrix V, it can be projected to eV =
UTVU. An explicit subspace diffusion step can then be performed
as eu∗ = ν eVeu, where u∗ denotes an intermediate variable. In lieu
of a simple evaluation, Treuille et al. [2006] instead perform a full
integration by employing an exponential, eu∗ = eν

eVeu, where e
denotes a matrix exponential [Moler and Van Loan 2003].

The more difficult non-linear advection term,−(u ·∇)u, must also
be addressed. Unlike the diffusion term, it cannot be written as a
static matrix V, projected to a smaller eV, and then used repeatedly
at runtime. If a finite difference discretization is used, the −(u ·
∇) term can be written as as matrix Au ∈ R3N×3N , and the full
advection can then be written as u∗ = Auu. However, u changes
every timestep, which correspondingly changes Au, and frustrates
any attempt to precompute a useful static matrix.

Treuille et al. [2006] observed that a static 3rd order tensor, A ∈
R3N×3N×3N can be constructed, yielding (A ×3 u)u = Auu =
u∗. This static tensor can be projected, A ×1 U ×2 U ×3 U =eA ∈ Rr×r×r , and reused at runtime: (eA ×3 eu)eu = eAeueu = eu∗.
A stabler exponential scheme is again used: eu∗ = e

eAeueu. The
complete integration from time t to t+ 1 can now be written:

eut+1 =
“
e

eA×3eut+ν eD” eut. (3)

Discussion: This approach is successful at efficiently computing
fluid dynamics within the subspace spanned by U. However, it
is not (and does not claim to be) a consistent integration method
[Carlberg et al. 2011]. The columns of U are obtained by perform-
ing an SVD on simulation data produced by a standard solver [Stam
1999; Fedkiw et al. 2001]. However, if the exact same initial con-
ditions and forcings used to generate this data are simulated using
Eqn. 3, they will produce significantly different dynamics (Figure
2). This is to be expected, as Eqn. 3 uses totally different spatial and
temporal discretizations: finite difference and exponential schemes
instead of semi-Lagrangian and implicit schemes. This also makes
Eqn. 3 difficult to apply to re-simulation, as it does not naturally
capture the dynamics of the original input simulation.

In order to obtain a consistent subspace integration scheme, the
integration methods used by the original solver must be matched.
Unfortunately, it is unlikely that the approach of projecting a static
advection tensor A can be applied to semi-Lagrangian schemes. In
the finite difference case, the entries of the advection matrix Au

change every timestep, but the spatial locations of its stencils re-
main static. In a semi-Lagrangian scheme, the backtrace rays select
new stencil locations every timestep, making it impossible to build
a single static 3rd order tensor. Promoting the tensor to 4th or 5th
order may seem promising, but these would only capture higher or-
der polynomial effects on static stencils; it does not address the fact
that the locations change. While generalizations to algebraic func-
tions are presented in [Stanton et al. 2013], the underlying static
stencil problem remains. Clearly, a different approach is needed.

3.2 The Cubature Approach

An et al. [2008] proposed a cubature approach to computing sub-
space internal force response in non-linear solid mechanics. We
believe that this approach can be made quite general, so we will
describe it generically here. Assume we have a vector of N points,
x ∈ R3N , and some non-linear function F . We can evaluate F at
any arbitrary point p by extracting the appropriate rows from x to
construct xp ∈ R3, and computing Fp, a point-sampled version of
F , as fp = Fp(xp) ∈ R3. If this is done for allN points, we obtain

Figure 2: Left: Frame from a standard [Stam 1999] fluid simula-
tion. Right: Results of trying to reproduce the left simulation using
the projected tensor [Treuille et al. 2006] approach. Different spa-
tial and temporal discretizations are used, so without a richer basis,
only the lowest frequency modes become active.

a vector f ∈ R3N that represents x non-linearly transformed by F ,

f = F(x). (4)

The F is generic, so x can represent a velocity field before ad-
vection, f the field after, and F any arbitrary (semi-Lagrangian,
MacCormack, finite difference) advection scheme.

We need a method that takes a reduced x̃ = UTx vector and effi-
ciently outputs a reduced vector ef . As seen in §3.1, F can some-
times be written as a tensor, and a projected version can be used
to efficiently compute ef . What if F cannot be easily written as a
tensor? A slow but viable method [Krysl et al. 2001] is to compute
and project the full 3N -dimensional f vector:

ef = UT f = UTF(x) = UTF(Ux̃). (5)

Unfortunately, this N -dependent computation largely discards the
speedups that would be obtained by a “subspace-only” method.
However, Eqn. 5 is in fact a multi-dimensional integral over the
entire simulation domain Ω, with respect to the basis functions en-
coded by the columns of U:

ef = UTF(Ux̃) =

Z
Ω

UT
p Fp(Upx̃). (6)

Above, Up ∈ R3×r are the rows in U that correspond to some
point p. It is straightforward to point sample this integral if we
isolate the term under the integral thusly:

efp = UT
p Fp(Upx̃). (7)

Note that due to the left-most projection, efp ∈ Rr , not R3. With
this point sampling method, we can apply the notion of cubature
[Press et al. 1992] and approximate the integral as a weighted sum
of F evaluations at P carefully chosen samples:Z

Ω

UT
p Fp(Upx̃) ≈

PX
p=1

wpU
T
p Fp(Upx̃). (8)

Subspace Fluid Re-Simulation • 62:3

ACM Transactions on Graphics, Vol. 32, No. 4, Article 62, Publication Date: July 2013

The problem is now one of locating a compact set of cubature points
xp and computing their weights wp. We will address this in §4.
Intuitively, UT

p spreads the action of F from a single point to the
entire domain. Other points that would have experienced similar
actions inherit the results, so computing them becomes redundant.

Discussion: Unlike the projected tensor approach, the cubature ap-
proach does not assume that F can be written as a tensor, but in-
stead treats it as a black box to be point sampled. Semi-Lagrangian
schemes fit this criteria, as they can perform the backtrace and in-
terpolation for a single cell. Potentially, a large number of cubature
points may be needed to approximate ef with reasonable accuracy.
Trivially, if all of the grid cells are included in the cubature set, with
weights equal to one, ef will be computed perfectly, but in O(N)
time. In the case of solid and shell mechanics, several works [An
et al. 2008; Chadwick et al. 2009; Kim and James 2009] have found
that that P ∝ r in practice. We will show that similar efficiencies
arise in fluid mechanics.

3.3 Our Cubature-Based Solver

With cubature preliminaries in place, we now describe our solver.
As is standard in graphical fluid simulation [Stam 1999], we split
the integration into stages, with intermediate states of u denoted
with a numbered superscript ui, and the beginning and final val-
ues denoted ut and ut+1. The standard integration scheme for an
Eulerian grid of N cells (e.g. [Stam 1999]) can be written as six
operations. In reading order:

u0 = ut + ∆t fe

u2 = Vu1

p = X−1d

u1 = A(u0)

d = Wu2

ut+1 = u2 + Yp,

where A(·) is an arbitrary advection scheme, V ∈ R3N×3N is a
diffusion matrix, W ∈ RN×3N is a velocity-to-divergence conver-
sion matrix, X ∈ RN×N is the Poisson matrix, p ∈ RN is the
pressure field, and Y is a pressure-to-velocity conversion matrix.

Subspace diffusion and pressure: Putting aside the force and
advection stages for the moment, we can show that the last four
stages of the integration can be performed very efficiently in re-
duced coordinates. Assume we have an orthonormal velocity basis,
U ∈ R3N×r , and a pressure-divergence basis, P ∈ RN×r , both
obtained by taking the SVD of a pre-existing simulation. The last
four stages can then be projected as follows:

UTu2 =
“
UTVU

”
UTu1

PTd =
“
PTWU

”
UTu2

PTp =
“
PTXP

”−1

PTd

UTut+1 = UTu2 +
“
UTYP

”
PTp

⇒

eu2 = eVeu1

ed = fWeu2

ep = eX−1edeut+1 = eu2 + eYep
.

Note that the matrix inverse and the projection have been inter-
changed the row of equations above. This swap is discussed in
detail in [Stanton et al 2013]. Further details on the implementation
and computation of the necessary SVDs are available in §3.4.
All of these operations are linear, and the projections have made
the matrices very small, so it becomes practical to combine the
diffusion and pressure stages into a single matrix-vector multiply:

eut+1 =
h
I eY eX−1fWi »

I
I

– eVeu1 = eZeu1, (9)

where I denotes an r × r identity matrix. Directly computing the
inverse of a Poisson matrix is often discouraged because the sparse

matrix becomes dense, and a large condition number can introduce
numerical error. In our case, both the matrix and its inverse are
dense, so space is not a consideration, and the projection by U
clusters the eigenvalues sufficiently that we found the results of the
direct inverse and a matrix solve to match to within working preci-
sion. Thus, as with other subspace methods [Treuille et al. 2006],
no matrix inversion is necessary at runtime.

Subspace Advection: Once a cubature scheme has been precom-
puted, the advection stage can be efficiently computed in reduced
coordinates. We will describe the runtime here, and the precom-
putation in §4. Assume we have a function A(up) that computes
advection at a grid cell p, containing velocity up. We can compute
the reduced quantity eu1 as:

eu1 =

PX
p=1

wpU
T
pA(Upeu0). (10)

AsA is generic, it can correspond to any scheme that supports point
sampling, and we have successfully used it to compute both semi-
Lagrangian and MacCormack advection (Figs. 6 and 7). These
schemes are already essentially point-based, so rewriting existing
code to support cubature took minimal effort.

Subspace Forces: The cubature approach can be used to com-
pute other non-linearities. The external force term fe term can
contain arbitrary forces, but one popular term is vorticity confine-
ment, fconf [Fedkiw et al. 2001]. This term is non-linear due to
the square root used to normalize the vorticity location vectors η.
We found it straightforward to capture using a cubature scheme,efconf =

PP
p=1 wpU

T
p V(Upeut), where V(·) is the point sampled

vorticity confinement function. While we found it possible to effi-
ciently compute these schemes using importance sampling, we did
not use them in our final results. Instead, the entire fe term was
computed in full coordinates in order to maximize the novelty of
forces used to perturb the subspace simulation.

3.4 Computing Large SVDs

Multiple SVDs: One important detail was temporarily glossed over
in §3.3 for the sake of exposition. In order to capture the full dy-
namics of an existing simulation, it is insufficient for U to only
support the velocity states at the beginning and end of a timestep.
If an intermediate value, e.g. u post-advection but pre-diffusion,
is not within basis, error will accumulate quickly. However, con-
catenating all of these intermediate states into one monolithic S
would drastically increase the SVD computation time and run-
time memory requirements. We instead construct four separate U
bases, U0,U1,U2 and U3, respectively for the pre-advection, pre-
diffusion, pre-projection, and final velocity states. This consider-
ably reduces precomputation time, as an SVD solve takes O(mn2)
time for anm×nmatrix, and we are partitioning one large n solve
into four smaller n

4
solves. These multiple SVDs make this ap-

proach slower than previous approaches [Treuille et al. 2006], but
only by a constant factor (four). The resulting bases are used to
precompute the matrices,

UT
2 VU1 = eV PTWU2 = fW UT

3 YP = eY
but at runtime, U1, U2, and P do not need to be in-core. Only the
bases for the initial and final states, U0 and U3 are needed. U0

is the rightmost Up in Eqn. 10, and U1 is the leftmost UT
p . The

wpU
T
P products are pre-cached to avoid needing U1 at runtime.

Out-of-Core SVD: The matrix of simulation snapshots S is of-
ten too large to fit into memory. We address this by perform-
ing an out-of-core SVD similar to that of James and Fatahalian

62:4 • T. Kim et al.

ACM Transactions on Graphics, Vol. 32, No. 4, Article 62, Publication Date: July 2013

[2003], but we favor accuracy over their output-sensitivity. We
first perform an out-of-core QR factorization using modified Gram-
Schmidt, S = QR, and then an SVD R = URΣVT , which is
very small and fits in-core. The final U is computed using an out-
of-core multiply QUR, but as singular values Σ are available, we
skip building columns below a discard threshold. The running time
splits evenly between computation (QR and QUR multiplies) and
disk I/O. While other out-of-core methods are available, e.g. QR
using block Householder transforms [Rabani and Toledo 2001], we
expect they would only accelerate computation by a constant.

3.5 Dirichlet and Neumann Obstacles

A practical fluid simulation method needs a method of handling
static and moving obstacles. In the case of subspace simulation,
the method must be selected carefully to avoid increasing the pre-
computation and runtime complexities. The standard method is
to clamp velocities on the interior of an obstacle, and to remove
these cells from the Poisson solve. This removes rows from the
V, W, X, and Y matrices of our Eulerian solve, and clips semi-
Lagrangian rays to obstacle surfaces.

This is an unattractive option for moving obstacles, because it
means that a separate eV, fW, eX, eY, and cubature scheme must
be computed for every frame in the simulation. We found that this
problem can be sidestepped using the Iterated Orthogonal Projec-
tion (IOP) approach of Molemaker et al. [2008].

The IOP approach: Instead of removing cells from the solve, the
IOP approach uses an affine transform to clamp cell velocities prior
to the Poisson solve. We first demonstrate this for Dirichlet bound-
aries. Eqn. 9 in full, unreduced coordinates is:

ut+1 =
ˆ
I YX−1W

˜ »I
I

–
Vu1,

where I ∈ R3N×3N is an identity matrix. Similar to the reduced
case, we abbreviate this as ut+1 = Zu1. An I can be trivially in-
serted: ut+1 = ZIu1. To impose Dirichlet boundaries, IOP zeros
out the diagonal entries in I that correspond to cells on the interior
of obstacles. We denote this zeroed-out I as D, to obtain:

ut+1 = ZDu1. (11)

After the pressure solve, the Dirichlet boundaries could still be vi-
olated, so the process is repeated: ut+1 = (ZD)2 u1. In the limit,
ut+1 = (ZD)∞ u1, the boundaries are guaranteed to be satis-
fied. In practice, only a few iterations are needed, and the authors
[Molemaker et al. 2008] report that a single iteration is sufficient
for production work. Despite the repeated projections, we observed
minimal numerical smearing in the final result. As mentioned in
Molemaker et al. [2008], (ZD)∞ corresponds to a PCG solve that
directly incorporates boundaries, not multiple pressure timesteps.

Neumann boundaries are achieved by appending a homogeneous
column n to D. When a diagonal entry is zeroed, the corresponding
row in n is set to the obstacle velocity. A homogenous coordinate
is then added to u1 to obtain the Neumann version of Eqn. 11,

ut+1 = Z
ˆ
D n

˜ »u1

1

–
= ZN

»
u1

1

–
.

where N denotes our Neumann boundary matrix. This process can
again be repeated until a desired boundary accuracy is met.

Subspace IOP: Molemaker et al. [2008] note that D and N do not
need to be explicitly constructed; it suffices to iterate over the grid
cells and clamp their values. For our appliation, we are interested

in constructing D and N, as they provide an elegant way of incor-
porating boundary conditions into a subspace simulation.

We show the Dirichlet case first. If we project D to obtain eD =
UTDU, Dirichlet boundaries can be added to Eqn. 9 by inserting
a single matrix multiply:

eut+1 = eZeDeu1. (12)

As with full-coordinate IOP, if additional boundary accuracy is
needed, the process can be repeated: eut+1 = (eZeD)2eu1. The Neu-
mann case adds a homogeneous column to U:

eN = UTN

»
U z3N

zTr 1

–
, (13)

where z3N ∈ R3N and zr ∈ Rr are zero vectors. The subspace
Neumann solve is then:

eut+1 = eZ eN »eu1

1

–
.

These boundaries were imposed without modifying Z or eZ, so the
problem of needing a per-timestep eV, fW, eX, or eY has been re-
moved. The IOP authors also observe that their method allows ob-
stacle boundaries to be ignored during advection, so the need for
per-frame cubature has also been avoided.

Efficient IOP matrix construction: Per-frame eZs do not need to
be precomputed, but we need to compute per-frame eNs. The direct
method is the projection eD = UTDU, but we have found that it is
more efficient to instead compute eD = UTU −UTDcU. Here,
Dc is a complement matrix that flips all the zero diagonal entries
in D to one, and vice versa. Most scenes contain relatively few
obstacle cells, so Dc is extremely sparse, and projects quickly. eN
is then constructed by appending the additional column, en = UTn.

Discussion: While we have found that our subspace IOP method
is effective for re-simulation, it has limitations. We assume that the
motion of obstacles is similar or identical to those in the original
simulation. If the internal obstacles undergo very novel motions,
the obstacle handling method of Treuille et al. [2006] is likely to
yield superior results. Our approach also inherits the limitation of
IOP that slight density leaks and pass-throughs are possible. How-
ever, like in Molemaker et al. [2008], we did not observe any sig-
nificant artifacts in practice.

4 Cubature Precomputation

We have described how to use a cubature scheme in §3.3, but we
have not described how to precompute the scheme. An et al. [2008]
use a greedy search algorithm, but we have found that it does not
converge in a practical amount of time for subspace fluid simula-
tions. In this section, we present an asymptotically faster method,
which we motivate by first describing the greedy algorithm.

4.1 The Greedy Search Algorithm

In the greedy search algorithm [An et al. 2008], a set of cubature
points are computed that fit a training set to a desired error tol-
erance. As is assumed by other subspace fluid methods [Treuille
et al. 2006; Wicke et al. 2009], a training set of T simulation “snap-
shots” is available. Assume we have a set of P promising cubature
points x1...P . The weights w1...P can be computed by solving a

Subspace Fluid Re-Simulation • 62:5

ACM Transactions on Graphics, Vol. 32, No. 4, Article 62, Publication Date: July 2013

least-squares problem,266666664

ef1
1 · · · ef1

p · · · ef1
P

...
. . .

...
...ef t1 · · · ef tp · · · ef tP

...
...

. . .
...efT1 · · · efTp · · · efTP

377777775
264 w1

...
wP

375 =

266666664

ef1

...ef t

...efT

377777775
. (14)

The superscipt indexes the t ∈ [1 . . . T] snapshots, and the sub-
script p ∈ [1 . . . P] the cubature points. On the right, each tth
row is a projected full-rank example computed using Eqn. 5. These
are the projections of the example velocity fields immediately post-
advection. The left is a matrix of point samples computed using
Eqn. 7, corresponding to the advection of a handful of cells.

This least squares problem yields a set of cubature weights that
closely approximate the examples. We abbreviate the above system
as Aw = b, where A ∈ RrT×P , w ∈ RP and b ∈ RrT . If the
fit given by Eqn. 14 does not meet a user-specified error bound ε
(i.e. if ‖r‖2 = ‖b −Aw‖2 > ε) then a new cubature point must
be added. A new column is then added to A, a new entry is added
to w, and the least squares fit is run again. The new point, xP+1, is
selected greedily. Every candidate point xp on the grid that is not
yet in the cubature set can generate a column ap to be appended
to A. The candidate point whose column has the largest projection
onto the residual, g = ap · r, has the most promise for reducing the
overall error, and is greedily added to the cubature set.

Computing ac for all the non-cubature points would be computa-
tionally prohibitive, so the candidates are randomly sampled, and
the one with the largest projection is selected. An et al. [2008]
perform a non-negative least squares solve (NNLS) in lieu of the
usual least squares (LS) problem, as negative weights ruin the pos-
itive definiteness of a finite element stiffness matrix. We do not
use stiffness matrices, but we also invoke an NNLS solver. A neg-
ative weight would flip the direction of a semi-Lagrangian back-
trace, which disagrees with physical intuition. Tests with an LS
solver produced large, oscillatory weights, which further supported
our intuition.

Algorithm Complexity: The greedy search algorithm runs in
O(rTP 4) time. An et al. [2008] used the standard Lawson-Hanson
[1974] NNLS algorithm, which runs a series of LS solves that each
take O(mn2) time for an m × n matrix [Golub and Van Loan
1996]. The LS problems grow in size from 1 to P in the inner
loop of the Lawson-Hanson algorithm, so a single NNLS solve for
A ∈ RrT×P takes

PP
p=1 rTp

2 = O(rTP 3) time. The greedy al-
gorithm calls the NNLS solver P times, once for each new cubature
point, yielding a running time of

PP
p=1 rTp

3 = O(rTP 4). Note
we used the identities

PP
p=1 p

2 = O(P 3) and
PP
p=1 p

3 = O(P 4).
This quartic complexity matches our experiments, as we found that
the algorithm did not converge to 1% error, even for modestly sized
fluids (48× 96× 48), even given almost six days to compute.

Other NNLS solvers: One possibility is to use a more efficient
NNLS solver, as alternative algorithms are an area of active re-
search [Chen and Plemmons 2007]. We compared against gradi-
ent projection [Kim et al. 2012] and block pivoting [Portugal et al.
1994] methods, but they did not yield sufficient accuracy in a com-
petitive amount of time. These methods assume the matrix is sparse
and low-rank, whereas ours is dense and full-rank. Parallel NNLS
algorithms [Luo and Duraiswami 2011] parallelize across multiple
right hand b terms and thus do not apply to our problem. The Bro
and de Jong [1997] modification of the Lawson-Hanson algorithm,
also known as Fast Non-Negative Least Squares (FNNLS), yielded

a significant constant speedup. While it did not solve the complex-
ity problem, we used it to accelerate all our computations.

Discarded Alternatives: The existing method is a greedy algo-
rithm, so it is tempting to investigate other standard algorithm types,
such as dynamic programming and divide-and-conquer [Kleinberg
and Tardos 2006]. In the case of dynamic programming, it is not
clear that the necessary optimal sub-problem property is satisfied by
our problem. Even if it is, dynamic programming also constructs a
solution incrementally, so it is likely to yield another O(rTP 4) al-
gorithm. Divide-and-conquer is more promising, as the cubature
points discovered by smaller, independent runs of the greedy algo-
rithm can be combined into a higher quality set of points. Unfortu-
nately, this approach was still too slow for our application.

4.2 An Importance Sampling Approach

We instead design an asymptotically faster algorithm that runs in
O(rTP 3) time. This algorithm is motivated by three key observa-
tions. First, much of the work of the greedy algorithm is redundant,
as many A matrices are solved that only differ by a column. This
suggests that many candidates should be added to the cubature set
c at once to amortize the cost of fitting A (Algorithm 1). Algo-

Algorithm 1: largeSamplingCubature(C, ε)
Data: C is a user-specific number of cubature candidates to add

during each pass, and ε is the requested cubature accuracy.
begin1

r = b2
The set of cubature points c = ∅3
while ||r||2 > ε do4

Add C randomly selected cubature candidates to c5
Build Aw = b from the current c6
Solve for non-negative w, update r = b−Aw7
Cull points in c whose weights are zero8

end9

rithm 1 was only observed to be faster than the greedy algorithm by
a constant factor. However, analyzing its behavior led us to our sec-
ond key observation: when many redundant points are present in c,
the Lawson-Hanson NNLS solver does not evenly distribute weight
among them, but instead allocates all of the weight to a single point,
and clamps the rest to zero. Therefore, Line 8 in Algorithm 1 will
cull c extremely efficiently.

A third observation leads to our efficient algorithm: the uniform
sampling in Algorithm 1 resembles Monte Carlo integration. De-
tails differ, but the goal of estimating the integrand using a mini-
mal number of samples (in our case, cubature points), remains the
same. We should therefore leverage the intuition behind importance
sampling: samples drawn from a non-uniform distribution that are
similar to the integrand will rapidly reduce variance, or in our case,
fitting error (Pharr and Humphreys [2010] is a good reference). In-
formally, we should cluster samples in regions that are likely to
yield non-zero weights.

We define our importance probability distribution function at each
discrete fluid cell xp as:

PDF(xp) = R

„
|ap · r|
r · r

«
, (15)

where ap is the candidate column of A generated by xp, r is the
current NNLS residual, and R is the number of points that are not
yet in the cubature set. The numerator is the greedy selection crite-
ria, g = ap ·r, and the denominator is a normalization constant, r·r

R

62:6 • T. Kim et al.

ACM Transactions on Graphics, Vol. 32, No. 4, Article 62, Publication Date: July 2013

Stam Plume MacCormack Plume Dirichlet (MacCormack) Neumann (Semi-Lagrangian)
Iteration L2 Error Cub. Points L2 Error Cub. Points L2 Error Cub. Points L2 Error Cub. Points

1 0.0428803 1273 0.0592719 1479 0.0409149 2033 0.0330917 2900
2 0.0148716 2311 0.0184463 2816 0.0145316 3416 0.0118481 4698
3 0.0107379 2528 0.0112989 3392 0.0106133 4149 0.00650847 5610
4 0.00866083 2747 0.00865156 3686 0.00871744 4808 converged converged

Total time: 01h 18m 07s Total time: 03h 05m 58s Total time: 09h 28m 29s Total time: 05h 29m 02s

Table 1: Performance of our importance sampling-based cubature training algorithm. The iteration count refers to the outer while loop in
Algorithm 1. L2 error is the relative fitting error after each iteration, and Cub. Points is the number of non-zero cubature points found. In
general, MacCormack training took longer, as the function is more non-linear.

which scales the PDF closer to the [0, 1] range. This clusters sam-
ple points in regions with large projections onto the residual, and
works very well in practice. We rejection sample this distribution
by replacing Line 5 of Algorithm 1 with a call to Algorithm 2.

Algorithm 2: importanceSampledCubature(C)

while C points have not been added to c do1
Randomly select a candidate xp not in c2
Add xp to c with probability PDF(xp)3

This combined algorithm computes a cubature set to within error
ε = 1% extremely quickly. The greedy search that took nearly six
days (141h 44m 59s) in §4.1 computed in less than half an hour
(29m 55s). The fitting errors after each iteration of the outer while
loop in Algorithm 1 are shown in Table 1. As a constant number of
iterations appear to be needed to converge to a desired error bound,
the main expense is the NNLS call, so we characterize the average
case running time of Algorithm 2 as O(rTP 3).

Complexity of projected tensor approach: The complexity of our
precomputation compares favorably with the projected tensor ap-
proach [Treuille et al. 2006]. The main bottleneck of that approach
is the projection of F ∈ R3N×3N×3N . This tensor is very sparse,
containing only 9N non-zero entries. This sparsity can only ex-
ploited for two projections, i.e. F ×1 U ×3 U = eF13 can be
performed inO(Nr2) time, but the third projection, i.e. eF13×2 U,
takes O(Nr3) time. By comparison, the O(rTP 3) complexity
of our importance sampling method does not depend on N . The
O(N) advection examples only need to be projected once to form
the right hand side of Eqn. 14 at the very beginning of training.

5 Implementation and Results

All our fluid simulation data were generated using a Precondi-
tioned Conjugate Gradient (PCG) solver with a Modified Incom-
plete Cholesky preconditioner [Fedkiw et al. 2001]. Faster algo-
rithms such as multigrid [Molemaker et al. 2008] or highly tuned
FFT implementations [Henderson 2012] are also available, but
since our subspace solver is an unoptimized prototype and PCG
is standard, we selected it for our comparisons. Our code, includ-
ing the PCG solver, was implemented in C++, and our tests were
run on a 12 core, 2.66 Ghz Mac Pro with 96 GB of RAM. We
used a collocated velocity grid for all of our simulations, but it
would be straightforward to adapt the code to a staggered grid. All
of our code was parallelized where appropriate using OpenMP, in-
cluding cubature evaluation and velocity reconstruction. We used
Eigen [Guennebaud et al. 2010] for dense linear algebra. Eigen
is a highly tuned library, but its matrix-vector multiplies are cur-
rently not multi-threaded, so more fine-grained optimizations are
still available for the velocity reconstruction stage. Timings for the
various stages in the precomputation are listed in Table 2.

0.001	

0.01	

0.1	

1	 11	 21	 31	 41	

Re
la
%
ve
	 L
2	 E

rr
or
	

Simula%on	 Timestep	

Rela%ve	 L2	 Error	 Over	 First	 50	 Timesteps	

Neumann	

Dirichlet	

Stam	 Plume	

MacCormack	 Plume	

Figure 3: Error of subspace simulations over the first 50 timesteps
of each simulation. Interestingly, integration error does not appear
to accumulate. Instead, it stays proportional to the 1% error of the
advection cubature. Note the logarithmic scale.

Figure 4: Cubature points (in red) computed by our importance
sampling method. Clockwise from upper left, the points correspond
to Figs. 6, 8, and 1. The points clearly cluster in regions where
interesting dynamics occur.

Subspace Fluid Re-Simulation • 62:7

ACM Transactions on Graphics, Vol. 32, No. 4, Article 62, Publication Date: July 2013

Stam Plume MacCormack Dirichlet Neumann
Resolution 200× 266× 200 200× 266× 200 276× 276× 138 175× 175× 350

Full solve time per frame 00h 02m 47s 00h 02m 49s 00h 01m 26s 00h 01m 23s
Full solve time total 06h 57m 30s 07h 02m 30s 03h 35m 00s 03h 27m 30s

Subspace solve time per frame,
with fe and VR 4.2s (39x faster) 5.6s (30x faster) 5.1s (17x faster) 5.7s (14x faster)

without fe and VR 18ms (9326x faster) 96ms (1764x faster) 130ms (661x faster) 34ms (2435x faster)
Precomputation times,
Multiple SVDs (§3.4) 04h 07m 36s 03h 14m 11s 04h 49m 38s 04h 18m 09s

Cubature construction (§4.2) 01h 18m 07s 03h 05m 58s 09h 28m 09s 05h 29m 02seV,fW, eX, and eY projection (§3.3) 04h 24m 40s 03h 04m 59s 04h 30m 59s 03h 54m 52seD or eN projection (§3.5) N/A N/A 00h 12m 12s 05h 11m 52s

Table 2: Top: Performance of our subspace solver compared to full-rank solves. To facilitate comparisons to previous works [Treuille et al.
2006; De Witt et al. 2012] we present timings both with and without the full-rank external force (fe) and velocity reconstruction (VR) steps.
Sparsely reconstructing the velocity field like the previous works would yield these superior performances. All reported times are for rank
r = 150, and all simulations were run for 150 frames. Lower accuracy U bases would yield additional speedups. Bottom: Running times
of the steps in the precomputation stage. Multiple SVDs is for the construction of all the U and P bases. Note that the SVDs and matrix
projections are highly task-parallel and could be run on different cluster nodes, but single system construction times are reported.

0	

0.05	

0.1	

0.15	

0.2	

0.25	

0.3	

0.35	

1	 4	 7	 10
	

13
	

16
	

19
	

22
	

25
	

28
	

31
	

34
	

37
	

40
	

43
	

46
	

49
	

52
	

55
	

58
	

61
	

64
	

67
	

70
	

73
	

76
	

79
	

82
	

85
	

88
	

91
	

94
	

97
	

10
0	

Re
la
%
ve
	 L
2	 E

rr
or
	

Simula%on	 Timestep	

Rela%ve	 L2	 Error	 of	 Perturbed	 Simula%ons	

vor0city	 =	 2.5	
vor0city	 =	 1.6	
vor0city	 =	 1.51	

Figure 5: Comparison of a perturbed subspace and full-rank
ground truth simulations. The original training simulation had vor-
ticity confinement ε = 1.5. We perturbed it by successive orders of
magnitude to ε = 1.51, 1.6 and 2.5. As expected, as the perturba-
tion grows, the L2 error relative to the ground truth does as well.

All of our examples were trained to within 1% relative L2 cubature
error and converged after a small number of iterations (Table 1).
The cubature schemes that were computed can be seen in Figure
4. To test for consistency, we compared the results of our sub-
space simulation to the original ground truth data (Figure 3). The
error was proportional to the advection cubature approximation er-
ror, and despite the history-aware nature of the simulation, did not
accumulate over time. When an O(N) full-rank advection scheme
was swapped in, the error dropped to within single precision. We
also tested how well our subspace model generalizes in Fig. 5. As
expected, L2 error relative to a ground truth solution increases as
the dynamics diverge from those of the training simulation. Char-
acterizing the error of subspace simulations under arbitrary pertur-
bations is an interesting and subtle topic [Homescu et al. 2005], so
we leave a more thorough analysis as future work.

Velocity Reconstruction: For our subspace re-simulations, we
placed the external force term fe (including vorticity confinement
and buoyancy) and density advection outside of the subspace, as
they provide the most straightforward avenues for stimulating novel
dynamics. This requires a dense O(N) velocity reconstruction
stage to be introduced, i.e. u = Ueu, which is known to be a bot-

tleneck in reduced order simulations [De Witt et al. 2012]. Our
method also supports output-sensitive sparse velocity reconstruc-
tions, such as the leaf example from Treuille et al. [2006] and the
particle-based examples from DeWitt et al. [2012]. To facilitate
comparisons to these methods, we list our solver performance both
with and without a full velocity reconstruction stage in Table 2.
With dense velocity reconstruction, we see an order of magnitude
speedup compared to the original full-rank solve. Without dense
reconstruction, we see the dramatic three orders of magnitude
speedup that subspace methods have been known to achieve.

NNLS codes: We tested several NNLS codes, including an Eigen
[Guennebaud et al. 2010] implementation of FNNLS, the original
Lawson-Hanson NNLS Fortran code [Lawson and Hanson 1974],
and a Matlab implementation of FNNLS by one of the original au-
thors [Bro 2001]. The Matlab code ran by far the fastest, and solved
a test matrix in 38 minutes that took that Fortran code 118 minutes
and the Eigen code 214 minutes. The Fortran code was faster than
the Eigen code because it caches partial factorizations across LS
solves. The Matlab timing included the file I/O time needed to pass
the NNLS problem and solution. Most of the running time is spent
in gemm and LS calls, so Matlab’s highly optimized, multithreaded
implementations explain the superior performance.

Stam Plume Example: Our first test was a standard semi-
Lagrangian solver [Stam 1999]. Figure 6 shows that our integra-
tor consistently reproduces the original dynamics, and that low-
accuracy U bases produce visual results with surprising qualitative
similarity. When the basis fails (Fig. 6, right) stable dynamics are
still produced, and novel, abstract dynamics emerge. The semi-
Lagrangian cubature appears to have inherited the stability of its
full-rank counterpart. We found that the subspace solver enables
temporal continuation: if timesteps subsequent to those from the
full-rank solver are desired, plausible new frames can be efficiently
generated using our subspace solver. Results can be seen in the
supplemental video.

MacCormack Plume Example: The cubature approach gener-
alizes to other non-linear methods, such as MacCormack advec-
tion [Selle et al. 2008]. The cubature training time was signifi-
cantly longer than the Stam Plume, which is to be expected, as the
MacCormack scheme contains a higher degree of non-linearity (es-
sentially two clamped semi-Lagrangian steps). We modified the
vorticity confinement constant ε [Fedkiw et al. 2001] in our re-
simulations, and found that more laminar flow could be retrieved
(Fig. 7, lower left), and that more turbulent motion could be ef-

62:8 • T. Kim et al.

ACM Transactions on Graphics, Vol. 32, No. 4, Article 62, Publication Date: July 2013

Figure 6: Left to right: 1. Last frame of the original semi-Lagrangian fluid simulation. 2. Last frame of our subspace simulation with SVD
discard threshold 10−7 and rank r = 150. Note that our subspace integrator successfully reproduces the dynamics of the original simulation.
3. Discard 10−6, r = 130. 4. Discard 10−5, r = 105. 5. Discard 10−4, r = 61. 6. Discard 10−3, r = 28. 7. Discard 10−2, r = 9. The
dynamics are surprisingly resilient to low-accuracy bases. Even when the basis fails (e.g. 10−2), it stably generates complex, novel dynamics.

ficiently re-simulated (Fig. 7, lower and upper right). When the
constant was set much higher, stable motion was still produced, but
the dynamics became more abstract. These motions can be seen in
the supplemental video.

Figure 7: Clockwise from upper left: 1. Original MacCormack
[Selle et al. 2008] simulation. 2. Novel flow efficiently generated
using our subspace integrator by doubling the vorticity confinement
ε. 3. Novel flow generated by quadrupling the same constant. 4.
Laminar flow is retrieved by setting ε to 0.

Dirichlet Test Example: We tested our Dirichlet IOP approach by
adding static obstacles to a plume simulation (Figure 8). The mo-
tion induced by MacCormack advection was already quite complex,
so we instead set the vorticity confinement ε to zero and removed
turbulence from the simulation, effectively using the subspace inte-
grator for laminar dynamics retrieval.

Figure 8: Left: Original MacCormack simulation with Dirichlet
boundaries. Right: Turbulent motion has been removed in the sub-
space re-simulation by setting the vorticity confinement ε to zero.

Neumann Test Example: We tested our Neumann IOP approach
by introducing a one-way coupling to rigid body data from the Open
Dynamics Engine (http://www.ode.org). For this scene, we
used semi-Lagrangian advection. Buoyancy was set to zero, so all
of the fluid motion is from the rigid bodies and vorticity confine-
ment. We increased the turbulence in the re-simulation by increas-
ing the vorticity confinement constant ε from 1.5 to 20. Normally
this would be considered a large value for ε, but smaller values

Subspace Fluid Re-Simulation • 62:9

ACM Transactions on Graphics, Vol. 32, No. 4, Article 62, Publication Date: July 2013

tended to produce less noticeable variation. We expect that this is
a manifestation of the ‘locking’ phenomena that subspace methods
are known to experience [Chadwick et al. 2009].

6 Discussion and Future Work

While our subspace integrator is able to efficiently re-simulate
novel flows, for large parameter perturbations, the solve diverges
from the results of a full-rank solve. A promising future direction
is to devise enrichment methods similar to the eXtended Finite Ele-
ment Method (XFEM) [Moës et al. 1999] that adds new basis func-
tions that re-introduce the needed degrees of freedom.

We have shown that it is possible to efficiently re-simulate scenes
using a subspace integrator. However, we have not attempted to
address one of the known limitations of subspace methods: system
memory limits the maximum rank of the velocity basis. Figure 6
suggests that even fairly drastic truncations of the basis can produce
qualitatively consistent results. However, an in-depth analysis of
this phenomenon is beyond the scope of the current work. Develop-
ing factorization methods that go beyond the traditional SVD [Seo
et al. 2011] is a promising approach for both reducing the memory
usage and accelerating the velocity reconstruction stage.

Finally, it remains to be seen if similar subspace methods can be de-
vised for liquid simulations. In level set-based flows, the signed dis-
tance field represents a new type of non-linearity. Cubature cannot
be directly applied, because algorithms such as the fast marching
method [Sethian 1999] cannot be naturally point sampled. Efficient
new subspace methods must be devised for this problem.

Acknowledgements: The authors would like to thank the review-
ers for helping to improve this manuscript, particularly §3.2, Matt
Wright for editing, Nils Thürey for early discussions, and Paul
Weakliem for rendering support. This material is based upon work
supported by a National Science Foundation CAREER award (IIS-
1253948). We acknowledge rendering support from the Center
for Scientific Computing from the CNSI, MRL: an NSF MRSEC
(DMR-1121053), Hewlett-Packard, and NSF CNS-0960316. Any
opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily re-
flect the views of the National Science Foundation.

References

AMSALLEM, D., AND FARHAT, C. 2012. Stabilization of
projection-based reduced-order models. International Journal
for Numerical Methods in Engineering 91, 4, 358–377.

AN, S. S., KIM, T., AND JAMES, D. L. 2008. Optimizing Cu-
bature for Efficient Integration of Subspace Deformations. ACM
Trans. on Graphics 27, 5 (Dec.), 165.

ANTTONEN, J., KING, P., AND BERAN, P. 2003. POD-based
reduced-order models with deforming grids. Mathematical and
Computer Modelling 38, 41 – 62.

BARAFF, D., AND WITKIN, A. 1992. Dynamic simulation of non-
penetrating flexible bodies. In Computer Graphics (Proceedings
of SIGGRAPH 92), 303–308.

BARBIČ, J., AND JAMES, D. L. 2005. Real-Time Subspace In-
tegration for St. Venant-Kirchhoff Deformable Models. ACM
Trans. on Graphics 24, 3 (Aug.), 982–990.

BERGMANN, M., CORDIER, L., AND BRANCHER, J.-P. 2005.
Optimal rotary control of the cylinder wake using proper orthog-
onal decomposition reduced-order model. Physics of Fluids 17,
9, 097101.

BERKOOZ, G., HOLMES, P., AND LUMLEY, J. L. 1993. The
proper orthogonal decomposition in the analysis of turbulent
flows. Annual Rev. Fluid Mech, 539–575.

BOURGUET, R., BRAZA, M., AND DERVIEUX, A. 2011.
Reduced-order modeling of transonic flows around an airfoil
submitted to small deformations. Journal of Computational
Physics 230, 1, 159 – 184.

BRO, R., AND DE JONG, S. 1997. A fast non-negativity-
constrained least squares algorithm. Journal of Chemometrics
11, 5, 393–401.

BRO, R., 2001. The n-way toolbox. http://bit.ly/Wmq8zM.

BROCHU, T., KEELER, T., AND BRIDSON, R. 2012. Linear-time
smoke animation with vortex sheet meshes. In Proceedings of
the ACM SIGGRAPH/Eurographics Sym. on Computer Anima-
tion, 87–95.

CARLBERG, K., BOU-MOSLEH, C., AND FARHAT, C. 2011.
Efficient non-linear model reduction via a least-squares petrov-
galerkin projection and compressive tensor approximations. In-
ternational Journal for Numerical Methods in Engineering 86,
2, 155–181.

CHADWICK, J. N., AN, S. S., AND JAMES, D. L. 2009. Har-
monic shells: a practical nonlinear sound model for near-rigid
thin shells. ACM Trans. Graph. 28, 5 (Dec.), 119:1–119:10.

CHEN, D., AND PLEMMONS, R. 2007. Nonnegativity constraints
in numerical analysis. In Symposium on the Birth of Numerical
Analysis.

DE WITT, T., LESSIG, C., AND FIUME, E. 2012. Fluid simulation
using laplacian eigenfunctions. ACM Trans. Graph. 31, 1, 10:1–
10:11.

DEPARIS, S., AND ROZZA, G. 2009. Reduced basis method for
multi-parameter-dependent steady navierstokes equations: Ap-
plications to natural convection in a cavity. Journal of Computa-
tional Physics 228, 12, 4359 – 4378.

FEDKIW, R., STAM, J., AND JENSEN, H. W. 2001. Visual simu-
lation of smoke. In Proceedings of SIGGRAPH, 15–22.

FOSTER, N., AND METAXAS, D. 1997. Modeling the motion
of a hot, turbulent gas. In Proceedings of SIGGRAPH, ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA,
181–188.

GOLUB, G., AND VAN LOAN, C. 1996. Matrix Computations,
3rd ed. The Johns Hopkins University Press, Baltimore.

GUENNEBAUD, G., JACOB, B., ET AL., 2010. Eigen v3.
http://eigen.tuxfamily.org.

HENDERSON, R. D. 2012. Scalable fluid simulation in linear time
on shared memory multiprocessors. In Proceedings of the Digi-
tal Production Symposium, ACM Press, 43–52.

HOMESCU, C., PETZOLD, L. R., AND SERBAN, R. 2005. Er-
ror estimation for reduced-order models of dynamical systems.
SIAM Journal on Numerical Analysis 43, 4, 1693–1714.

JAMES, D. L., AND FATAHALIAN, K. 2003. Precomputing in-
teractive dynamic deformable scenes. ACM Transactions on
Graphics 22, 3 (July), 879–887.

KIM, T., AND JAMES, D. L. 2009. Skipping steps in deformable
simulation with online model reduction. ACM Transactions on
Graphics 28, 5 (Dec.), 123:1–123:9.

62:10 • T. Kim et al.

ACM Transactions on Graphics, Vol. 32, No. 4, Article 62, Publication Date: July 2013

KIM, T., AND JAMES, D. L. 2011. Physics-based character
skinning using multi-domain subspace deformations. In ACM
SIGGRAPH/Eurographics Sym. on Computer Animation, ACM,
New York, NY, USA, 63–72.

KIM, T., THÜREY, N., JAMES, D., AND GROSS, M. 2008.
Wavelet turbulence for fluid simulation. ACM Trans. Graph. 27
(August), 50:1–50:6.

KIM, D., SRA, S., AND DHILLON, I. S. 2012. A non-monotonic
method for large-scale non-negative least squares. Optimization
Methods and Software (OMS) (Jan.).

KLEINBERG, J., AND TARDOS, E. 2006. Algorithm Design.
Addison-Wesley.

KLINGNER, B. M., FELDMAN, B. E., CHENTANEZ, N., AND
O’BRIEN, J. F. 2006. Fluid animation with dynamic meshes. In
Proceedings of SIGGRAPH, 820–825.

KRYSL, P., LALL, S., AND MARSDEN, J. E. 2001. Dimensional
model reduction in non-linear finite element dynamics of solids
and structures. International Journal for Numerical Methods in
Engineering 51, 479–504.

LAWSON, C. L., AND HANSON, R. J. 1974. Solving Least Square
Problems. Prentice Hall, Englewood Cliffs, NJ.

LEGRESLEY, P. A., AND ALONSO, J. J. 2001. Investigation of
non-linear projection for pod based reduced order models for
aerodynamics. In AIAA Aerospace Sciences Meeting and Ex-
hibit.

LENTINE, M., ZHENG, W., AND FEDKIW, R. 2010. A novel
algorithm for incompressible flow using only a coarse grid pro-
jection. ACM Trans. Graph. 29 (July), 114:1–114:9.

LOSASSO, F., GIBOU, F., AND FEDKIW, R. 2004. Simulating wa-
ter and smoke with an octree data structure. ACM Trans. Graph.
23, 457–462.

LUMLEY, J. 1967. The structure of inhomogeneous turbulent flows.
Atmospheric turbulence and radio wave propagation, 166–178.

LUO, Y., AND DURAISWAMI, R. 2011. Efficient parallel nonneg-
ative least squares on multicore architectures. SIAM Journal on
Scientific Computing 33, 5, 2848–2863.

MEYER, M., AND ANDERSON, J. 2007. Key Point Subspace
Acceleration and Soft Caching. ACM Transactions on Graphics
26, 3 (July), 74.

MOËS, N., DOLBOW, J., AND BELYTSCHKO, T. 1999. A fi-
nite element method for crack growth without remeshing. Inter-
national Journal for Numerical Methods in Engineering 46, 1,
131–150.

MOLEMAKER, J., COHEN, J. M., PATEL, S., AND NOH, J. 2008.
Low viscosity flow simulations for animation. In ACM SIG-
GRAPH/Eurographics Sym. on Computer Animation, 9–18.

MOLER, C., AND VAN LOAN, C. 2003. Nineteen dubious ways
to compute the exponential of a matrix, twenty-five years later.
SIAM Review 45, 1, 3–49.

MULLEN, P., CRANE, K., PAVLOV, D., TONG, Y., AND DES-
BRUN, M. 2009. Energy-preserving integrators for fluid anima-
tion. ACM Trans. Graph. 28, 3 (July), 38:1–38:8.

NARAIN, R., SEWALL, J., CARLSON, M., AND LIN, M. C. 2008.
Fast animation of turbulence using energy transport and procedu-
ral synthesis. ACM Trans. Graph. 27 (December), 166:1–166:8.

PENTLAND, A., AND WILLIAMS, J. 1989. Good vibrations:
Modal dynamics for graphics and animation. In Computer
Graphics (Proceedings of SIGGRAPH 89), 215–222.

PFAFF, T., THUEREY, N., AND GROSS, M. 2012. Lagrangian
vortex sheets for animating fluids. ACM Trans. Graph. 31, 4
(July), 112:1–112:8.

PHARR, M., AND HUMPHREYS, G. 2010. Physically-Based Ren-
dering: From Theory to Implementation. Morgan Kaufmann.

PORTUGAL, L. F., JÚDICE, J. J., AND VICENTE, L. N. 1994. A
comparison of block pivoting and interior-point algorithms for
linear least squares problems with nonnegative variables. Math-
ematics of Computation 63, 208 (Oct.), 625–643.

PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T., AND
FLANNERY, B. P. 1992. Numerical Recipes in C: The Art of
Scientific Computing. Cambridge University Press, New York,
NY, USA.

RABANI, E., AND TOLEDO, S. 2001. Out-of-core svd and qr
decompositions. In SIAM Conference on Parallel Processing for
Scientific Computing.

SCHECHTER, H., AND BRIDSON, R. 2008. Evolving
sub-grid turbulence for smoke animation. In ACM SIG-
GRAPH/Eurographics Sym. on Computer Animation, 1–7.

SELLE, A., FEDKIW, R., KIM, B., LIU, Y., AND ROSSIGNAC, J.
2008. An unconditionally stable maccormack method. J. Sci.
Comput. 35, 2-3 (June), 350–371.

SEO, J., IRVING, G., LEWIS, J. P., AND NOH, J. 2011. Com-
pression and direct manipulation of complex blendshape models.
ACM Trans. Graph. 30, 6 (Dec.), 164:1–164:10.

SERRE, G., LAFON, P., GLOERFELT, X., AND BAILLY, C. 2012.
Reliable reduced-order models for time-dependent linearized eu-
ler equations. Journal of Computational Physics 231, 15, 5176
– 5194.

SETHIAN, J. 1999. Level set methods and fast marching methods.
Cambridge University Press.

SHAH, A. 2007. Cooking effects. In ACM SIGGRAPH 2007
courses, ACM, New York, NY, USA, SIGGRAPH ’07, 45–58.

SIFAKIS, E., AND BARBIČ, J. 2012. Fem simulation of 3d de-
formable solids: a practitioner’s guide to theory, discretization
and model reduction. In ACM SIGGRAPH 2012 Courses, ACM,
New York, NY, USA, SIGGRAPH ’12, 20:1–20:50.

STAM, J. 1999. Stable fluids. In SIGGRAPH 1999, 121–128.

STANTON, M., SHENG, Y., WICKE, M., PERAZZI, F., YUEN, A.,
AND ANDADRIEN TREUILLE, S. N. 2013. Non-polynomial
galerkin projection on deforming meshes. ACM Trans. Graph.
32 (July).

TREUILLE, A., LEWIS, A., AND POPOVIĆ, Z. 2006. Model re-
duction for real-time fluids. ACM Transactions on Graphics 25,
3 (July), 826–834.

VASILESCU, M. A. O., AND TERZOPOULOS, D. 2004. Tensortex-
tures: multilinear image-based rendering. ACM Trans. Graph.
23, 3 (Aug.), 336–342.

WICKE, M., STANTON, M., AND TREUILLE, A. 2009. Modular
bases for fluid dynamics. ACM Trans. on Graphics 28, 3 (Aug.),
39.

Subspace Fluid Re-Simulation • 62:11

ACM Transactions on Graphics, Vol. 32, No. 4, Article 62, Publication Date: July 2013

